Corrigendum: Impact of salt stress, cell death, and autophagy on peroxisomes: quantitative and morphological analyses using small fluorescent probe N-BODIPY
نویسندگان
چکیده
Plant peroxisomes maintain a plethora of key life processes including fatty acid β-oxidation, photorespiration, synthesis of hormones, and homeostasis of reactive oxygen species (ROS). Abundance of peroxisomes in cells is dynamic; however mechanisms controlling peroxisome proliferation remain poorly understood because measuring peroxisome abundance is technically challenging. Counting peroxisomes in individual cells of complex organs by electron or fluorescence microscopy is expensive and time consuming. Here we present a simple technique for quantifying peroxisome abundance using the small probe Nitro-BODIPY, which in vivo fluoresces selectively inside peroxisomes. The physiological relevance of our technique was demonstrated using salinity as a known inducer of peroxisome proliferation. While significant peroxisome proliferation was observed in wild-type Arabidopsis leaves following 5-hour exposure to NaCl, no proliferation was detected in the salt-susceptible mutants fry1-6, sos1-14, and sos1-15. We also found that N-BODIPY detects aggregation of peroxisomes during final stages of programmed cell death and can be used as a marker of this stage. Furthermore, accumulation of peroxisomes in an autophagy-deficient Arabidopsis mutant atg5 correlated with N-BODIPY labeling. In conclusion, the technique reported here enables quantification of peroxisomes in plant material at various physiological settings. Its potential applications encompass identification of genes controlling peroxisome homeostasis and capturing stress-tolerant genotypes.
منابع مشابه
Plant peroxisomes are degraded by starvation-induced and constitutive autophagy in tobacco BY-2 suspension-cultured cells
Very recently, autophagy has been recognized as an important degradation pathway for quality control of peroxisomes in Arabidopsis plants. To further characterize the role of autophagy in plant peroxisome degradation, we generated stable transgenic suspension-cultured cell lines of heterotrophic Nicotiana tabacum L. cv. Bright Yellow 2 expressing a peroxisome-targeted version of enhanced yellow...
متن کاملImpact of Duration and Severity of Persistent Pain on Programmed Cell Death
Programmed cell death is a highly regulated form of cell death, mostly distinguished by the activation of a family of cystein-aspartate proteases (caspases) that cleave various proteins resulting in morphological and biochemical changes characteristic of this form of cell death. Several recent studies have addressed the role of programmed cell death in inflammatory and chronic pain states. Casp...
متن کاملImpact of Duration and Severity of Persistent Pain on Programmed Cell Death
Programmed cell death is a highly regulated form of cell death, mostly distinguished by the activation of a family of cystein-aspartate proteases (caspases) that cleave various proteins resulting in morphological and biochemical changes characteristic of this form of cell death. Several recent studies have addressed the role of programmed cell death in inflammatory and chronic pain states. Casp...
متن کاملInvestigation Reducing Detrimental Effects of Salt Stress on Morphological and Physiological Traits of (Thymus vulgaris) by Application of Salicylic Acid. Elham Harati1*, Bahareh Kashefi1 and Mohammad Matinizadeh2
Salicylic acid (SA) is a naturally occurring plant hormone that has positive effects on growth and tolerance to biotic and abiotic stresses, especially salinity in plants. To evaluate the effects of SA and salt stress on some morphological and physiological traits and quantitative activities of antioxidant enzymes on thyme (Thymus vulgaris), was conducted a factorial pot experiment based on com...
متن کاملApoptosis, Autophagy, and Necrosis in Murine Embryonic Gonadal Ridges and Neonatal Ovaries: An Animal Model
Background: In mammalian ovaries, loss of over two-thirds of germ cells happens due to cell death. Nonetheless, the exact mechanism of cell death has yet to be determined. The present basic practical study was designed to detect 3 types of programmed cell death, namely apoptosis, autophagy, and necrosis, in murine embryonic gonadal ridges and neonatal ovaries.Methods: Twenty gonadal ridges and ...
متن کامل